15 research outputs found

    Ka-band feed arrays for spacecraft reflector antennas with limited scan capability: An overview

    Get PDF
    JPL and NASA are in the process of developing ground and spacecraft antenna systems at Ka-band frequencies for future deep space applications. The use of Ka-band (32-GHz down) communication will result in smaller ground and spacecraft antennas and associated equipment, and will provide larger bandwidths necessary for very high data rate communication and radio navigation. In this article, the use of a small phased array as a feed for a reflector antenna system with limited scan capability is addressed. Different feed and antenna configurations, as well as array architectures, are examined. Some theoretical and experimental parameters of a particular breadboard feed array developed by JPL and the University of Massachusetts are presented. Guidelines for the future direction of this effort are provided

    Performance of a family of omni and steered antennas for mobile satellite applications

    Get PDF
    The design and performance of a family of vehicle antennas developed at JPL in support of an emerging US Mobile Satellite Service (MSS) system are described. Test results of the antennas are presented. Trends for future development are addressed. Recommendations on design approaches for vehicle antennas of the first generation MSS are discussed

    Exploring the next generation Deep Space Network

    Get PDF
    As the current 70-meter antennas are quite old (28-35 years) it is necessary to consider replacing these antennas in the near term as well as providing a capability beyond 70-meters in the future. A study was conducted that investigated the remaining service life of the existing antennas and considered alternatives for eventual replacement of the 70 m-subnet capability. This paper examines several of the concepts considered and explores some of the options for the next generation Deep Space Network

    Exploring the next generation Deep Space Network

    Get PDF
    As the current 70-meter antennas are quite old (28-35 years) it is necessary to consider replacing these antennas in the near term as well as providing a capability beyond 70-meters in the future. A study was conducted that investigated the remaining service life of the existing antennas and considered alternatives for eventual replacement of the 70 m-subnet capability. This paper examines several of the concepts considered and explores some of the options for the next generation Deep Space Network

    Synthesis of a large communications aperture using small antennas

    Get PDF
    In this report we compare the cost of an array of small antennas to that of a single large antenna assuming both the array and single large antenna have equal performance and availability. The single large antenna is taken to be one of the 70-m antennas of the Deep Space Network. The cost of the array is estimated as a function of the array element diameter for three different values of system noise temperature corresponding to three different packaging schemes for the first amplifier. Array elements are taken to be fully steerable paraboloids and their cost estimates were obtained from commercial vendors. Array loss mechanisms and calibration problems are discussed. For array elements in the range 3 - 35 m there is no minimum in the cost versus diameter curve for the three system temperatures that were studied

    Pointing-Vector and Velocity Based Frequency Predicts for Deep-Space Uplink Array Applications

    No full text
    Uplink array technology is currently being developed for NASA's Deep Space Network (DSN) to provide greater range and data throughput for future NASA missions, including manned missions to Mars and exploratory missions to the outer planets, the Kuiper belt, and beyond. Here we describe a novel technique for generating the frequency predicts that are used to compensate for relative Doppler, derived from interpolated earth position and spacecraft ephemerides. The method described here guarantees velocity and range estimates that are consistent with each other, hence one can always be recovered from the other. Experimental results have recently proven that these frequency predicts are accurate enough to maintain the phase of a three element array at the EPOXI spacecraft for three hours. Previous methods derive frequency predicts directly from interpolated relative velocities. However, these velocities were found to be inconsistent with the corresponding spacecraft range, meaning that range could not always be recovered accurately from the velocity predicts, and vice versa. Nevertheless, velocity-based predicts are also capable of maintaining uplink array phase calibration for extended periods, as demonstrated with the EPOXI spacecraft, however with these predicts important range and phase information may be lost. A comparison of the steering-vector method with velocity-based techniques for generating precise frequency predicts specifically for uplink array applications is provided in the following sections
    corecore